SYLLABUS 2021-2022

DIFFERENTIAL AND PARTIAL DERIVATES EQUATIONS

1. Information on academic programme

_ · · · · · · · · · · · · · · · · · · ·	
1.1. University	"1 Decembrie 1918" University of Alba Iulia
1.2. Faculty	Faculty of Exact Sciences and Engineering
1.3. Department	Informatics, Mathematics and Applied Electronics
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science/ 251201, 251203, 251204

2. Information of Course Matter

2.1. Course		Differential and	l partial deriv	ates equations	2.2.	Code		CSE205	5
2.3. Course Leader			Aldea Miha	ela					
2.4. Seminar Tutor			Aldea Mih	aela					
2.5. Academic Year	II	2.6. Semester	I	2.7. Type of Evaluation (E – final exan CE - colloquy examination /		CE	2.8. Type of o (C– Compuls optional, F -	sory, Op –	С
				CA -continuous assessment)	S				

3. Course Structure (Weekly number of hours)

3.1. Weekly number of hours	4	3.2. course	2	3.3. seminar, laboratory	2
3.4. Total number of hours in the curriculum	56	3.5. course	28	3.6. seminar, laboratory	28
Allocation of time:					Hours
Individual study of readers					14
Documentation (library)					14
Home assignments, Essays, Portfolios					14
Tutorials					-
Assessment (examinations)					2
Other activities				-	

3.7 Total number of hours for individual study	56
3.9 Total number of hours per semester	56+44 =100
3.10 Number of ECTS	4

4. Prerequisites (where applicable)

4.1. curriculum-based	Mathematical Analysis
4.2. competence-based	C4 The use of the theoretical basis of computer science and of
	formal models

5. Requisites (*where applicable*)

5.1. course-related	Room equipped with video projector / board
5.2. seminar/laboratory-based	Room equipped with video projector / board

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

Professional competences	C4 The use of the theoretical basis of computer science and of formal models
	C4.1 The definition of base concepts and principles of computer science and mathematics as well as of the mathematical theories and models.
	C4.2 The interpretation of mathematical and computer science (formal) models.
	C4.3 The identification of appropriate models and methods for solving real-life problems.
	C4.4 The use of simulation in the study of the behavior of developed models and evaluation of results. C4.5 The embedding of formal models in specific applications in various domains.
Transversal competences	

7. Course objectives (as per the programme specific competences grid)

77 Course objectives (a	"" Course objectives (as per the programme specime competences gira)				
7.1 General objectives of the	Presentation with practical methods for solving of ordinary differential equations,				
course	systems of differential equations, higher order differential equations and with partial				
	derivates of order 1 and 2.				
7.2 Specific objectives of the	Learning the basic techniques of solving differential calculus problems; knowledge and				
course	application of theorems, models, their properties and methods of work in the field of				
	differential equations and partial derivatives; learning ability to search and use				
	information; acquiring skills for conducting studies case				

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
1. First order differential equations: Basic concepts. Cauchy	Lecture, conversation,	2
problem.	exemplification	
	Lecture, conversation,	2
2. Separable differential equations. Homogeneous equations.	exemplification	
	Lecture, conversation,	2
3. Linear differential equations	exemplification	
4. Bernoulli, Riccati, Lagrange, Clairaut Differential	Lecture, conversation,	2
equations	exemplification	
5. Exact differential equations; Solutions existence and	Lecture, conversation,	2
uniqueness	exemplification	
6. Higher order differential equations: Cases and modalities	Lecture, conversation,	2
for reduction the order of an equation; Linear differential	exemplification	
equations with variable coefficients. Fundamental sets of		
solutions.		
7. Method of undetermined coefficients . Differential	Lecture, conversation,	2
equations with constant coefficients.	exemplification	
8. Systems of differential equations: Systems of first order	Lecture, conversation,	2
differential equations, the equivalence with higher order	exemplification	
differential equations. Cauchy problem.		
9. The fundamental matrix of a system of first order linear	Lecture, conversation,	2
differential equations with variable coefficients.	exemplification	
10. Systems of first order linear differential equations with	Lecture, conversation,	2
constant coefficients. Matrix exponential	exemplification	
11. Autonomous systems.	Lecture, conversation,	2
	exemplification	

12. Partial derivates equations: Linear, homogeneousand	Lecture, conversation,	2
nonhomogeneous first order partial derivates equations.	exemplification	
13. Second order partial derivates equations	Lecture, conversation,	2
	exemplification	
14. Equations of mathematical physics. Laplace equation.	Lecture, conversation,	2
	exemplification	
Seminars-laboratories	Teaching methods	
1 Problems for solving first order differential equations (4	Laboratory activities,	
seminars)	exemplification, conversation	
2 Problems for solving higher order differential equations (2	Laboratory activities,	
seminars)	exemplification, conversation	
3 Differential equations with constant coefficients (1 seminar)	Laboratory activities,	
	exemplification, conversation	
4 Solving systems differential equations (3 seminars)	Laboratory activities,	
	exemplification, conversation	
5 First order partial derivates equations (2 seminars)	Laboratory activities,	
	exemplification, conversation	
6 Second order partial derivates equations (2 seminars)	Laboratory activities,	
	exemplification, conversation	
D .f		

References

- I. A. Rus, Ecuatii diferentiale, ecuatii integrale si sisteme dinamice, Transilvania Press, Cluj-Napoca, 1996.
- G. Tataru, Ecuatii diferentiale si integrale, Ed. Economica, Bucuresti, 2000
- V. Olariu, T. Stanasila, Ecuatii diferentiale si cu derivate partiale, Editura Tehnica, 1982.
- R. Redheffer, Diffwerential Equations. Theory and applications, Jones and Bartleft Publishers, Boston, 1991.
- C. Dragusin, V. Prepelita, C. Radu, C. Caslaru, M. Gavrila, *Ecuatii diferentiale si ecuatii cu derivate partiale*, Ed. MatrixRom, Bucuresti, 2009
- 6. Gh. Micula, P. Pavel, Ecuatii diferentiale si integrale prin exercitii si probleme, Editura Dacia, 1989.
- J. C. Robinson, An introduction to ordinary differential equations, Cambridge University Press, Cambridge, 2004.
- Ana Niţă, Alina Niţă, *Ecuaţii şi sisteme diferenţiale*, Bucureşti, 2000. Ghe. Vranceanu, M. Gozu, *Ecuatii diferentiale, sisteme de ecuatii diferentiale si ecuatii cu derivate partiale*, MATRIXROM, Bucuresti, 2004

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final	
			grade	
10.4 Course	Final evaluation	Written paper	50%	
	-	-	-	
10.5 Seminar/laboratory	Continuous assessment	Laboratory activities	50%	
		portfolio		
	-		-	
10.6 Minimum performance standard: note 5				
C4 The use of the theoretical basis of computer science and of formal models				

Submission date	Course leader signature	Seminar tutor signature
		
Date of approval by Departm	nent members	Department director signature