
 SYLLABUS

SOFTWARE ENGINEERING

1. Information on academic programme

1.1. University „1 Decembrie 1918”

1.2. Faculty Facultatea de Informatică și Inginerie

1.3. Department Informatică și Inginerie

1.4. Field of Study Computer Science

1.5. Cycle of Study undergraduate

1.6. Academic programme / Qualification Computer Science

2. Information of Course Matter

2.1. Course SOFTWARE ENGINEERING 2.2. Code CSE303

2.3. Course Leader Lect. dr. Domsa Ovidiu

2.4. Seminar Tutor Lect. dr. Domsa Ovidiu

2.5. Academic

Year

III 2.6. Semester I 2.7. Type of

Evaluation

 (E – final exam/

CE - colloquy examination /

CA -continuous assessment)

E 2.8. Type of course
(C– Compulsory, Op – optional,

F - Facultative)

O

3. Course Structure (Weekly number of hours)

3.1. Weekly number of

hours
4 3.2. course 2 3.3. seminar, laboratory 2

3.4. Total number of

hours in the curriculum
56 3.5. course 28 3.6. seminar, laboratory 28

Allocation of time:

Individual study of readers 36

Documentation (library) 38

Home assignments, Essays, Portfolios, projects 36

Tutorials 38

Assessment (examinations) 4

Other activities…….

3.7 Total number of hours for individual

study
162

3.9 Total number of hours per semester 218

3.10 Number of ECTS 4

4. Prerequisites (where applicable)

4.1. curriculum-based INFO209, INFO207

4.2. competence-based Room equipped with video projector / board

Laboratory – computer, Project Management applications.

5. Requisites (where applicable)

5.1. course-related Room equipped with video projector / boar

5.2. seminar/laboratory-based Laboratory – computer, Software: Microsoft Project.

6. Specific competences to be aquired (chosen by the course leader from the programme general

competences grid)

Professional competences C2.2 The identification and explanation of appropriate mechanisms for software

analysis, design and development.

C3.4. UML Data and model’s description.

C3.5. The development of software engineering components for business projects.

Transversal competences
C6.2. The identification and explanation of base architectures, structures,

organizing and management systems for software development stages.

C6.3. The use of various techniques for installing, configuring and managing

different software tools

7. Course objectives (as per the program specific competences grid)

7.1 General objectives of

the course

Abilities to develop and manage all stack for problems solving regarding

information’s structuring, storing, processing, and documentation and date

description.

7.2 Specific objectives of

the course

Explain basic concepts in the field of software engineering and process stages

software development to describe and compare models of software development

processes

Analyze user requirements,identify solutions, compare and select tools

appropriate software to resolve a given issue. Use proper UML core charts (UC,

activity, classes, sequences, states) in system analysis and design

software.

To argue the importance of the field software engineering and ethical principles

of the engineering profession software. Develop a correct relationship with

clients.

8. Course contents

8.1 Course (learning units) Teaching methods Remarks
1. Introduction to software engineering

1.1 Development of software systems

1.2 Software engineering features

1.3 Notes on the development of a software product

Lecture, conversation,

exemplification

2. The life cycle of a software product

2.1 Phases of the life cycle

2.2 Cascade models

2.3 Iterative models

2.4 Extreme Programming Methodology

Lecture, conversation,

exemplification

3. Requirements engineering

3.1 Specific issues

3.2 Types of requirements

3.3 Requirements analysis

 3.4 Specification of requirements

Lecture, conversation,

exemplification

4. Software modeling

4.1 Modeling languages

4.2 Structured modeling

4.3 Object Oriented Modeling

4.4 UML Language

Lecture, conversation,

exemplification

On-line, Teams

5. Designing software systems

5.1 Software architectures

5.2 Characteristics of a software system

5.3 Architectural Styles

5.4 Architectural models

Lecture, conversation,

exemplification

On-line, Teams

6. Development of software systems

6.1 RAD

6.2 Incremental development

6.3 Prototyping

6.4 Agile methods

6.5 Development cycle in extreme programming

 6.6 Reuse in the development of a software system

Lecture, conversation,

exemplification

On-line, Teams

7. Testing and validation

7.1 Verification and Validation Process

7.2 Static and dynamic verification

7.3 Testing and debugging

7.4 Planning the test

7.5 Static analysis

 7.6 Testing and validating systems

Lecture, conversation,

exemplification

On-line, Teams

Case study

Lecture, conversation,

exemplification

Seminars-laboratories Teaching methods
Microsoft project and different tools, general presentation,

description of the functionalities, examples
Project-work, computer-based

activities, laboratory activities

Applications frame and project design using project

management tools
Project-work, computer-based

activities, laboratory activities

UML description using software tools, Use proper UML

core charts (UC, activity, classes, sequences, states)

Project-work, computer-based

activities, laboratory activities

Designing tools. Designing objects – based content. Project-work, computer-based

activities, laboratory activities

On-line, Teams

Designing software systems, Software architectures,

Arhitectural Style, Architectural models
Project-work, computer-based

activities, laboratory activities

On-line, Teams

Agile methods, tool for monitoring and planning tasks.(Jira,

Mantis, Scrum monitoring)
Project-work, computer-based

activities, laboratory activities

On-line, Teams

Testing and validation tools Project-work, computer-based

activities, laboratory activities

On-line, Teams

Complet case study. Project. Project-work, computer-based

activities, laboratory activities

References

1. BASS, L., CLEMENTS, P., KAZMAN R.: Software Architecture in Practice, 2nd ed., Addison-Wesley, 2003

2. MARTIN, ROBERT CECIL: Agile software development: principles, patterns, and practices, Pearson

Education,

2002

3. McCONNELL, STEVE: Code Complete, 2nd ed., Microsoft Press, 2004

4. OTERO, C.E.: Software Engineering Design, CRC Press, 2012.

site: http://softwareengineeringdesign.com/Default.htm

9. Corroboration of course contents with the expectations of the epistemic community’s significant

representatives, professional associations and employers in the field of the academic programme

Not applicable

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final

grade

10.4 Course Final evaluation Project 60%

- - -

10.5 Seminar/laboratory Continuous assessment Laboratory activities

portfolio

40%

- -

10.6 Minimum performance standard:

Implementation and documentation of the software units in a web applications including object oriented

programming language and efficiently using the related concepts.

Submission date Course leader signature Seminar tutor signature

23.09.2022 ______________________ _________________________

Date of approval by Department members Department director signature

________________________ ______________________

