SYLLABUS Academic year 2024-2025 Year of Study I / Semester I

1. Information on academic program

	<u>. I U</u>
1.1. University	"1 Decembrie 1918" University of Alba Iulia
1.2. Faculty	Faculty of Economics
1.3. Department	Business Administration and Marketing
1.4. Field of Study	Business Administration
1.5. Cycle of Study	Bachelor
1.6. Academic program /	Business Administration / 242102 Process improvement specialist, 242104 Process
Qualification/ ESCO Code	manager, 242110 Specialist in planning, control, and reporting of economic
	performance; ESCO Code 2421 - Management and Organisation Analysts

1. Information of Course Matter

2.1. Course		Mathem	atics Ap	oplied to Economics 2.2	2. Code		BA112	2
2.3. Course Leade	e r / Semi	nar Tutor	Lectu	rer. PhD. Wainberg Dorin				
2.4. Seminar Tutor	ſ		Lectu	rer. PhD. Wainberg Dorin				
2.5. Academic	I	2.6.	I	2.7. Type of Evaluation (E –	E	2.8. Type of cou	rse (C-	C
Year		Semester		final exam/C- examination		Compulsory, Or) —	
				/VP)		optional, F - Fac	cultative)	

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of	56	3.5. course	28	3.6. seminar, laboratory	28
hours in the curriculum					
Allocation of time:					Hours
a Individual study of readers					32
b Documentation (library)					20
c Home assignments, Essays, Portfolios					32
d Tutorials				-	
e Assessment (examinations)				2	
f Other academic activities (study visits, mentoring, projects)				8	

3.7 Total number of hours for individual study (a+b+c)	84
3.8 Total number of hours for academic activities (d+e+f+3.4)	66
3.9 Total number of hours per semester (3.7+3.8)	150
3.10 Number of ECTS	6

4. Prerequisites (where applicable)

4.1. curriculum-based	
4.2. competence-based	

5. Requisites (where applicable)

5.1. course-related	- classroom endowed with video projector / board
5.2. seminar/laboratory-based	- classroom endowed with video projector / board

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

Competences/Study results	R5/C5 Performs data analysis
	R11/C11 Analyzes business plans
	R17/C17 Manages business requirements
Transversal competences	R22/CT22 Think analytically
_	

7. Course objectives (arising from the acquired specific competencies)

7. Course objective	es (arising from the acquired specific competencies)
7.1 General objectives	On the one hand, the aim of the discipline is to provide students with the capacity to
of the course	anayse and decide in a logical and rigorous mode, and on the other hand, to contribute to the
	future economists'multidisciplinary trainig. This is the reason why the course content aims to
	the students' familiarization with the concepts and mathematical modelling technique applied
	to the economic phenomena, the business plan placement in mathematical context and its
	solving with mathematical programming methods, the formulation of mathematical models
	for deferred payments and credits, as well as loan reimbursement, and the optimization of certain financial operations
7.2 Specific objectives	To characterise the concept of mathematical model for an economic process;
of the course	• To distinguish between various types of models (physical, abstract, deterministic, stochastic, linear, non-linear models, etc);
	• To know the main stages in drawing up of a mathematical model (the analysis of economic problem, formalization of the realtions between the elements of a problem, model building, model solving, i.e. solution establishment, analysis, interpretation, validation and implementation);
	To determine the algoritm for dual problem elaboration;
	To identify the method (methods) for solving PPLs (simplex method, transport method,);
	To distinguish between algorithms for PPL solving;
	• To describe the algorithms for PPL solving in post-optimization situations (free term changes in restrictions – changes in the quantity of the available resources, changes in the coefficients of the objective function – price and unitary profit changes, modification of the technological coefficients, etc.);
	To characterise the algorithm for PPL solving in whole numbers;
	To determine the special cases of the transport problems
	• To recognize and use mathematical models associated with the following types of operations:
	- simple and compound interest; valorification and updating; simple interest paid in advance;
	- loan amortization; annuities.

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
Solving linear programming problems	Lecture, discussions	2 hours
Algebraic and geometrical method		
Simplex algorithm	Lecture, discussions	2 hours
Particular cases: the infinite case, the degenerate case, multiple solution case		
Duality. Dual simplex	Lecture, discussions	2 hours
Couple of dual problems - symmetrical form		
Re-optimization of linear programming problems	Lecture, discussions	2 hours
Changes in vector c, column vector from matrix A, free term vectors		
Parametric linear programming	Lecture, discussions	2 hours
Linear dependency of a vector C parameter, and free term vector		

Transport problems	Lecture, discussions	2 hours
Particular cases: degenerate solution, multiple solution case		
Transport problem re-optimization	Lecture, discussions	2 hours
Modification of: the coefficient matrix, what is available and/or what is needed		
Parametric transport problems.	Lecture, discussions	2 hours
Linear vector dependency: of the coefficient matrix, what is available and/or		
what is needed		
Special transport problems	Lecture, discussions	2 hours
Problems with: imposed solution, restricted routes, grouped offer or demand		
Simple interest	Lecture, discussions	2 hours
Unitary interest, fructification, updating factor, medium values		
Compound interest	Lecture, discussions	2 hours
Gobal fructification/updating factor, initial/final sum		
Annual deferred payment (annuities)	Lecture, discussions	2 hours
Anticipated or posticipated payment		
Credit and loan reimbursement	Lecture, discussions	2 hours
Equivalent loan systems		
Direct and indirect amortizations	Lecture, discussions	2 hours

Bibliography

- 1. P. Blaga, A. Mureșan Matematici aplicate în economie, vol. I, Cluj-Napoca, 1993, 1996
- 2. D. Baz, V. Butescu, N. Stremţan Matematici superioare, Bucharest, 1994
- 3. Gh. Cenuşă (coord.) Matematici pentru economiști, Bucharest, 2002
- 4. Gh. Cenușă, A. Filip Matematica pentru economiști, Cision Publishing House, Bucharest, 2005
- 5. L. Căbulea Matematici aplicate în economie, Dacia Publishing House, Cluj-Napoca, 2002
- 6. L. Căbulea Cercetări Operaționale, Dacia Publishing House, Cluj-Napoca, 2002
- 7. O. Popescu, I. Radomir Matematici pentru economiști, Blue (Albastra) Publishing House, Cluj-Napoca, 2005

8. I. Purcaru – Matematici generale si elemente de optimizare, Economic Publishing House, Bucharest, 1998

8.2. Seminar	Teaching methods	
Geometrical method	Exercises, problems,	2 hours
Algebraic method	debates	
Simpex algorithm	Exercises, problems,	2 hours
Particular cases: the infinite case, the degenerate case, multiple solution case	debates	
Duality. Dual simplex	Exercises, problems,	2 hours
Couple of dual problems - symmetrical form	debates	
Re-optimization of linear programming problems	Exercises, problems,	2 hours
Changes in vector c, column vector from matrix A, free term vectors	debates	
Parametric linear programming	Exercises, problems,	2 hours
Linear dependency of a vector C parameter, of the free term vector	debates	
Transport problems	Exercises, problems,	2 hours
Particular cases: degenerate solution, multiple solution case	debates	
Transport problem re-optimization	Exercises, problems,	2 hours
Modification of: the coefficient matrix, what is available and/or what is needed	debates	
Parametric transport problems.	Exercises, problems,	2 hours
Linear vector dependency: of the coefficient matrix, what is available and/or	debates	
what is needed		
Special transport problems	Exercises, problems,	2 hours
Problems with: imposed solution, restricted routes, grouped offer or demand	debates	
Simple interest	Exercises, problems,	2 hours
Unitary rate, fructification, updating factor, medium values	debates	
Simple interest	Exercises, problems,	2 hours
Unitary rate, fructification, updating factor, medium values	debates	
Compound interest	Exercises, problems,	2 hours
Gobal fructification/updating factor, initial/final sum	debates	

Annual deferred payment (annuities)	Exercises, problems,	2 hours
Anticipated or posticipated payment	debates	
Credit and loan reimbursement	Exercises, problems,	2 hours
Direct and indirect methods	debates	

Bibliography

- 1. P. Blaga, A. Mureșan Matematici aplicate în economie, vol. I, Cluj-Napoca, 1993, 1996
- 2. D. Baz, V. Butescu, N. Stremţan Matematici superioare, Bucharest, 1994
- 3. Gh. Cenuşă (coord.) Matematici pentru economiști, Bucharest, 2002
- 4. Gh. Cenuşă, A. Filip Matematica pentru economiști, Cision Publishing House, Bucharest, 2005
- 5. L. Căbulea Matematici aplicate în economie, Dacia Publishing House, Cluj-Napoca, 2002
- 6. L. Căbulea Cercetări Operaționale, Dacia Publishing House, Cluj-Napoca, 2002
- 7. O. Popescu, I. Radomir Matematici pentru economisti, Blue Publishing House (Albastră), Cluj-Napoca, 2005
- 8. I. Purcaru Matematici Generale Şi Elemente De Optimizare, Economic Publishing House, Bucharest, 1998

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

For students who continue their studies at a master's program in the field of business administration, the discipline can be a starting point for deepening the field and elaborating works with a high scientific level. Through content, the discipline responds to the current practical needs of employers.

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	Final evaluation	Written paper	50%
	-	-	-
10.5 Seminar/laboratory	Continuous assessment	Assessment test	50%
	-		-

10.6 Minimum performance standard:

- It is necessary to obtain a minimum grade of 5 (five) in order to pass this subject;
- In order to pass the subject, it is mandatory to take the evaluation test.

Fill in date	Course leader's signature,	Seminar tutor's signature,
12.09.2024	Lecturer. PhD. Wainberg Dorin	Lecturer. PhD. Wainberg Dorin

Approval date in departament 16.09.2024

Department director's signature, PhD Assoc.Prof. Maican Silvia