SYLLABUS

Academic year 2024-2025

Year of study I / Semester I

1. Information on academic program

1.1. University	"1 Decembrie 1918" University of Alba Iulia
1.2. Faculty	Faculty of Informatics and Engeneering
1.3. Department	Informatics, Mathematics and Electronics
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science
	ESCO-08: 2512/ Software developers
	Analyst 251201
	Computer System Programmer 251204
	Computer System Engineer 251203

2. Information of Course Matter

2.1. Course Mathematical and		nd comp	computational logics 2.2. Code		ode		CSE 10:	2	
2.3. Course Leader				perg Dorin					
2.4. Seminar Tutor Wainberg Dorin									
2.5. Academic Year	I	2.6. Semester	I	2.7. Type of Evaluation (E – final exam/ CE - colloquy examinatio CA -continuous assessme		E	2.8. Type of co (C – Compulsor optional, F - Fa	ry, Op –	С

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	3	3.2. course	2	3.3. seminar, laboratory	1
hours					
3.4. Total number of hours	42	3.5. course	28	3.6. seminar, laboratory	14
in the curriculum					
Allocation of time:					
Individual study of readers					20
Documentation (library)					10
Home assignments, Essays, Portfolios					10
Tutorials					-
Assessment (examinations)					2
Other activities					-

3.7 Total number of hours for individual study	58
3.8 Total number of hours according to the curricula	42
3.9 Total number of hours per semester	100
3.10 Number of ECTS	4

4. Prerequisites (where applicable)

4. I Terequisites \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
4.1. curriculum-based	-			
4.2. competence-based				

5. Requisites (where applicable)

5.1. course-related	Room equipped with video projector / board
5.2. seminar/laboratory-based	Room equipped with video projector / board

6. Specific competences to be acquired (chosen by the course leader from the programme general competences grid)

Professional competences	CP3 (1 ECTS), CP 26 (2 ECTS), CP32 (1 ECTS)
Transversal competences	Not applicable

7. Course objectives (as per the program specific competences grid)

7. Oddise objectives (as per the program specific competences grid)			
7.1 General objectives of the course	The discipline Computational logics aims to provide students opportunities to		
	identify and use knowledge of the laws of human reasoning, for the purposes		
	of mastering proper expertise and especially for their enforcement in the areas		
	of artificial intelligence, analysis and synthesis of logic circuits, the automatic		
	demonstration theorems, the logic programming.		
7.2 Specific objectives of the course	Acquiring fundamental knowledge concerning the discipline specific concepts: formal systems, judgments and sentences, modal logic elements, probability, predicate logic elements; training in problem solving skills necessary for circuit design and optimization of computer systems based on structural formulas, representing information in memory computer systems.		

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
1. Propositional Logic: Logical operations, Logical equivalence of	Lecture, conversation, exemplification	2 ore
formulas, Duality law		
Decision Problem. Perfect normal forms.	Lecture, conversation, exemplification	2 ore
Propositional calculus elements: The concept of formula. True formulas	Lecture, conversation, exemplification	2 ore
4. Deduction theorem. Rules of propositional calculus.	Lecture, conversation, exemplification	2 ore
Logically equivalent formulas. Deductibility theorems. Formulas in propositional algebra and propositional calculus.	Lecture, conversation, exemplification	2 ore
No contradiction and completeness of propositional calculus. Independence of propositional calculus axioms.	Lecture, conversation, exemplification	2 ore
7. Predicate calculus: Definitions of predicates and quantifiers. Normal forms.	Lecture, conversation, exemplification	2 ore
8. Predicate calculus formulas and axioms.	Lecture, conversation, exemplification	2 ore
9. Noncontradiction and narrowly completeness of predicate calculus. Theorems of predicate calculus.	Lecture, conversation, exemplification	2 ore
10. Equivalent formulas in predicate calculus. Axioms of predicate calculus.	Lecture, conversation, exemplification	2 ore
11. Numeral: positional representation of numbers, algorithms for crossing a number from one base to another, the four operations in various numeral, numeral 2, 8, 16; characteristic elements.	Lecture, conversation, exemplification	2 ore
12. Representation of numerical information in memory computer systems: fixed-point representation of numerical information, floating point representation of numerical information, arithmetic operations with floating point numbers, IEEE P754 Standard	Lecture, conversation, exemplification	2 ore
13. Boolean functions and their realization: the notion of Boolean function of several variables, Boolean operations AND, OR, NOT	Lecture, conversation, exemplification	2 ore
14. The operation of AND gate, OR gate, NOT gate circuits; Implementation of Boolean functions. Boolean functions applications	Lecture, conversation, exemplification	2 ore
Seminars-laboratories	Teaching methods	
1 Logic sentences – applications	Laboratory activities, exemplification, conversation	2 ore
2. Elements of propositional calculus – applications	Laboratory activities, exemplification, conversation	2 ore
3. Predicate calculus – applications	Laboratory activities, exemplification, conversation	2 ore
4. Numeral – applications	Laboratory activities, exemplification, conversation	2 ore
Representation of numerical information in memory computer systems – applications	Laboratory activities, exemplification, conversation	2 ore
6. Boolean functions and their realization	Laboratory activities, exemplification, conversation	2 ore
7. The operation of AND gate, OR gate, NOT gate circuits; Implementation of Boolean functions. Boolean functions applications	Laboratory activities, exemplification, conversation	2 ore
References - M. Ben-Ari: Mathematical Logic for Computer Science, Ed. Springer, 2	2001.	

- M. Lupea, A. Mihis: A Computational Approach to Classical Logics and Circuits, Editura Presa Universitară Clujeană, Cluj-Napoca, 2016.
- Teodor Stihi, Introducere in logica simbolica, Ed. BIC ALL, Bucuresti 1999;
- Michael R. Genesereth, Nils J. Nislsson, Logical Foundations of Artificial Intelligence, Morgan Kaufmann Publishers, 1988
- S. Russell and P. Norvig, Artificial Intelligence. A Modern Approach, Prentice Hall, 1995
- Moise Cocan, Bogdana Pop, Logica computationala, Ed. Albastra, Cluj-Napoca, 2006
- Gh. Stefan, V. Bistriceanu, Circuite integrate digitale probleme proiectare, Ed. Albastra, Cluj-Napoca, 2000
- Boian F., Sisteme de operare interactive, Ed. Libris, 1994
- Aldea M., Logica computationala, Seria Didactica, Alba Iulia, 2009.
 - 9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic program

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade	
10.4 Course	Final evaluation	Written paper	50%	
10.5 Seminar/laboratory	Continuous assessment	Tests during the semester	50%	
10.6 Minimum performance standard. Modelling and solving some medium complexity level problems, using the mathematical and				

10.6 Minimum performance standard: Modelling and solving some medium complexity level problems, using the mathematical and computer sciences knowledge.

Submission date Course leader signature Seminar tutor signature

Date of approval by Department members

Department director signature