SYLLABUS

PROGRAMMING BASICS 2024-2025

1. Program General Data

1.1. University	"1 Decembrie 1918" of Alba Iulia	
1.2. Faculty	Faculty of Informatics and Engineering	
1.3. Department	Informatics, Mathematics and Electronics Department	
1.4. Area	Computer Science	
1.5. Level	Undergraduate	
1.6. Specialization	Computer Science	
	ESCO-08: 2512/ Software developers	
	Analyst 251201	
	Computer System Programmer 251204	
	Computer System Engineer 251203	

2. Subject General Data

2.1. Subject		PROGRAMMI	PROGRAMMING BASICS		2.2.	Code		CSE 103	3
2.3. Course holder/	Lectu	rer/ Instructor's	Domșa Ovidiu						
Name									
2.4. Teaching Assista	ant's N	lame	Incze Arpad						
2.5. Year	Ι	2.6. Semester	Ι	2.7. Evaluation	1	Ε	2.8. Status	(C –	С
				form (E – final	l		Compulsory,	Op –	
				exam/C-			optional, F -	Facultative)	
				examination /V	/P)				

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	5	3.2. course	2	3.3. seminar, laboratory	3
hours					
3.4. Total number of	70	3.5. course	28	3.6. seminar, laboratory	42
hours according to the				-	
curricula					
Time distribution:					
Individual study using the lecture notes					
Documentation (library)					20
Homework, Essays, Portfolios					30
Tutoring					-
Evaluation (exams)					25
Other activities					-

3.7 Total number of hours for individual study	105
3.8 Total number of hours according to the curricula	70
3.9 Total number of hours per semester	175
3.10 Credits	7

4. Prerequisites

4.1. Curricula prerequisites	
4.2. according to the general competencies	Mathematics at the medium level.

5. Conditions

5.1. Conditions to support teaching	Room equipped with video projector/board.
5.2. Conditions for supporting	Laboratory – computers. Software: Code Blocks, Internet
seminar/laboratory activities	acces.

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

Professional competences	<i>CP 7 (1 ECTS), CP10 (1 ECTS), CP13 (1 ECTS), CP24 (1 ECTS), CP27 (1 ECTS), CP 29 (1 ECTS), CP33 (1 ECTS)</i>
Transversal competences	Not applicable

7. Course objectives

9	
6.1 General course objectives	- Develop algorithmic thinking and skills for developing
	elementary algorithms.
	- Learning basic tools for developing elementary algorithms.
	- Knowledge of types of methods and data structure regarding
	algorithms and their development methods.
	- Use of an advanced programming language for implementing
	the studied algorithms.
	- Programming in C language knowledge.
6.2 Specific course objectives	

8. Course contents

Lectures	Didactic methods used	Observation
General principles for structured programming and	Lecture, discussions, examples	
algorithm development.		
Definitions: Algorithms. Characteristics. Structure, data	Lecture, discussions, examples	
and algorithmically steps.		
Organizing data and structure in structural programming.	Lecture, discussions, examples	
Linear, alternative and while structures.		
Algorithms: Elaboration, Correctness, Complexity and	Lecture, discussions, examples	
Testing.		
Elementary algorithms. Switch variable values,	Lecture, discussions, examples	
alternative structures, While and repeat structures,		
vectors, mathematical quantification each/exist, Cartesian		
product algorithm.		
Counting, Summary, Searching elementary algoritms.	Lecture, discussions, examples	
Evaluation	Lecture, discussions, examples	
Sub algorithms, defining parameters and variable transfer	Lecture, discussions, examples	
Elementary sorting methods (Bubble sort, Selection Sort,	Lecture, discussions, examples	
Numbering Sort, Insertion Sort)		

Sorting and searching algorithms complexity. Elementary	Lecture, discussions, examples
algorithm methods. Intercalation.	
Recursively algorithms. Recursively function.	Lecture, discussions, examples
C language. Elementary concepts. Vocabulary. Data	Lecture, discussions, examples
definition. Input/output data in C.	
Programming structure in C. Instructions IF, WHILE,	Lecture, discussions, examples
DO, CASE	
Elementary algorithms, applications.	Lecture, discussions, examples

References

- 1. Ovidiu Domsa, Imperative / Procedural programming, Course notes, 2013.
- 2. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.
- 3. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.
- 4. Donald E. Knuth, <u>The Art of Computer Programming</u>, Volumes 1–3, Addison-Wesley Professional Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2: Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley Professional.

0	
Seminars-laboratories	Didactic methods used
General principles for structured programming and	laboratory works
algorithm development. Examples.	
Describe algorithms using logical schema flow, pseudo	laboratory works
code language and programming languages.	
C language. IDE Code Blocks. C programs structure. C	laboratory works
elementary programs examples.	
Elementary C language data and structure representation.	laboratory works
Input/ Output data in C.	
Structural programming in C.	laboratory works
Elementary Vectors program examples.	laboratory works
Elementary String program examples.	laboratory works
Elementary algorithm implementation. Switch, Search,	laboratory works
Counting, numbering, Sum	
Sorting algorithms. (Bubble sort, Selection Sort,	laboratory works
Numbering Sort, Insertion Sort)	
Application. Sorting and searching algorithms	laboratory works
complexity. Elementary algorithm methods.	
Intercalation.	
Recursively algorithms. Recursively function. Examples.	laboratory works
Application.	laboratory works
Evaluation. Portfolio of laboratory practical works	laboratory works

References

- 1. Ovidiu Domsa, Imperative / Procedural programming, Course notes, 2013.
- 2. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.
- 3. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.
- Donald E. Knuth, <u>The Art of Computer Programming</u>, Volumes 1–3, Addison-Wesley Professional Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2: Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley Professional.

9. Corroborating Course content expectations to the epistemic community representatives, professional associations and employers representative for the curricula

- Not applicable.

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage from the	
			Innai mark	
10.4 Course	Final evaluation	Written exam	50%	
	-	-	-	
10.5 Seminar/laboratory	Continuous assessment	Portfolio of laboratory practical works	50%	
	-		-	
10.6 Minimum performance standard:				

Completion date

Instructor's signature

Date of approval within the department

Teaching assistant's signature

.....

Head of departament's signature

.....