
 SYLLABUS

Data Structures

1. Information on academic programme

1.1. University „1 Decembrie 1918” of Alba Iulia

1.2. Faculty Faculty of Informatics and Engeneering

1.3. Department Department of Computer Science, Matematics and Applied

Electronics / Departamentul de Informatica, Matematica si

Electronica

1.4. Field of Study Computer Science

1.5. Cycle of Study Bachelor

1.6. Academic programme / Qualification Computer Science /ESCO: 2512/ Software developers
Analyst 251201

Computer System Programmer 251204

Computer System Engineer 251203

2. Information of Course Matter

2.1. Course Data Structures 2.2. Code CSE109

2.3. Course Leader Rotar Corina

2.4. Seminar Tutor Cristea Daniela

2.5. Academic

Year

I 2.6. Semester II 2.7. Type of

Evaluation

 (E – final exam/

CE - colloquy examination /

CA -continuous assessment)

E 2.8. Type of course
(C– Compulsory, Op – optional,

F - Facultative)

C

3. Course Structure (Weekly number of hours)

3.1. Weekly number of

hours
6 3.2. course 2 3.3. seminar, laboratory 4

3.4. Total number of

hours in the curriculum
84 3.5. course 28

3.6. seminar, laboratory 56

Allocation of time: Hours

Individual study of readers 25

Documentation (library) 20

Home assignments, Essays, Portfolios 40

Tutorials -

Assessment (examinations) 6

Other activities……. -

3.7 Total number of hours for individual

study
91

3.8 Total number of hours in the

curriculum
84

3.9 Total number of hours per semester 175

3.10 Number of ECTS 7

4.Prerequisites (where applicable)

4.1. curriculum-based

Fundamentals of programming/ Programming basics (7 ECTS)

4.2. competence-based Partially CP7 (1 ECTS), CP10 (1 ECTS), CP13 (1 ECTS), CP24 (1 ECTS), CP 27 (1 ECTS),
CP29 (1 ECTS), CP33 (1 ECTS)

5. Requisites (where applicable)

5.1. course-related Room equipped with video projector / board

5.2. seminar/laboratory-based Laboratory – computer, Software: Visual Studio 2010, BorlandC,

Internet access.

6. Specific competences to be aquired (chosen by the course leader from the programme general

competences grid)

Professional competences
CP3 (3 ECTS), CP10 (1 ECTS) CP14 (1 ECTS), CP27 (1 ECTS), CP28 (1 ECTS)

Transversal competences Not applicable

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of the course Develop students' ability to design software that is dedicated to solving

medium complexity problems.

Deepening the concept of data structure and gaining the skills to design

abstract data types and associated libraries.

Creating a rigorous and efficient programming style

7.2 Specific objectives of the course Developing students' ability to effectively manage information by using

abstract data types and rigorously designing the algorithms to process the

data.

Drawing a coherent documentation on the applications of average

complexity.

8. Course contents

8.1 Course (learning units) Teaching methods Remarks

1. Introduction. Programming paradigms Lecture, conversation,

exemplification

2h

2. Data structures. Abstract data type (ADT). Examples:

Rational ADT, Compex ADT- 2 sessions

Lecture, conversation,

exemplification

4h

3. Simple linked lists, circulars, stack, queue. List ADT. Lecture, conversation,

exemplification

2h

4. Double Linked lists Lecture, conversation,

exemplification

2h

5. ADT Trees Lecture, conversation,

exemplification

2h

6. ADT tables Lecture, conversation,

exemplification

2h

7. TAD Graphs. Algorithms on graphs. Lecture, conversation,

exemplification

2h

8. Programming methods. Divide et Impera technique. Lecture, conversation,

exemplification

2h

9. Greedy method. Lecture, conversation,

exemplification

2h

10. Branch and Bound method. Lecture, conversation,

exemplification

2h

11. Backtracking method. - 2 sessions Lecture, conversation,

exemplification

4h

12. Dynamic programming method. Lecture, conversation,

exemplification

2h

Seminars-laboratories Teaching methods

1. Review programming paradigms. Moderately complex

problems with different data structures used

Project-work, computer-based

activities, laboratory activities

4h

2. Data structures. ADT Compex implementation. laboratory activities 4h

3. Simple linked lists, circulars lists, stacks, queues. ADT

List.

laboratory activities 4h

4. Double linked list. laboratory activities 4h

5. Trees. laboratory activities 4h

6. Binary search tree. Operations on trees. laboratory activities 4h

7. ADT tables laboratory activities 4h

8. ADT graphs. Graphs’ representation laboratory activities 4h

9. Algorithms on graphs. laboratory activities 4h

10. Programming methods. Divide et Impera techniques. laboratory activities 4h

11. Greedy method-specific issues laboratory activities 4h

12. Branch and Bound method-specific issues laboratory activities 4h

13. Backtracking method-specific issues laboratory activities 4h

14. Dynamic programming method-specific issues laboratory activities 4h

References
1. Rotar C., Data structers and algorithms, Ed. Didactica, Alba Iulia, 2008.

2. Bruce Eckel, Thinking in C++, manual online.

3. Bjarne Stroustrup, The C++ Programming Language, Addison Wesley, 1997.

4. H. Schildt: C++ manual complet, electronic book.

5. Peter Muller: Introduction to Object-Oriented Programming Using C++ , electronic book.

9. Corroboration of course contents with the expectations of the epistemic community’s significant

representatives, professional associations and employers in the field of the academic programme

Not applicable. Data Structure is a fundamental subject in the domain which is required in the curricula of

Computer Science specialization. Course content is designed for training the algorithmic thinking of the

students.

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final

grade

10.4 Course Final evaluation Written paper 60%

- - -

10.5 Seminar/laboratory Continuous assessment Laboratory activities

portfolio

40%

- -

10.6 Minimum performance standard:

Implementation and documentation of the software units in high-level programming languages and efficiently

used programming environments; ability to identify and design ADT

Submission date Course leader signature Seminar tutor signature

______________ ______________________ _________________________

Date of approval by Department members Department director signature

________________________ ______________________

