SYLLABUS

Academic year 2024-2025

Year of study I / Semester II

1. Information on academic program

1.1. University	"1 Decembrie 1918" of Alba Iulia
1.2. Faculty	Faculty of Informatics and Engineering
1.3. Department	Informatics, Mathematics and Electronics Department
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science /ESCO: 2512/ Software developers
	Analyst 251201
	Computer System Programmer 251204
	Computer System Engineer 251203

2. Information of Course Matter

2.1. Course		Graph algorithms		2.2. Co	ode	CS	SE 111			
2.3. Course Leader	.3. Course Leader Dr. Dorin Wainberg		orin Wainberg							
2.4. Seminar Tutor			Dr. Dorin Wainberg		Dr. Dorin Wainberg		Wainberg			
2.5. Academic Year	I	2.6. Semester	II 2.7. Type of Evaluation (E – final exam/ CE - colloquy examination / CA - continuous assessment)		E	2.8. Type of course (C– Compulsory, Op – optional, F - Facultative)		С		

3. Course Structure (Weekly number of hours)

	,				
3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of hours	56	3.5. course	28	3.6. seminar, laboratory	28
in the curriculum					
Allocation of time:					hours
Individual study of readers				35	
Documentation (library)					30
Home assignments, Essays,	Portfolios				27
Tutorials					-
Assessment (examinations)					2
Other activities					-

3.7 Total number of hours for individual study	94
3.8 Total number of hours in the curriculum	56
3.9 Total number of hours per semester	150
3.10 Number of ECTS	6

4. Prerequisites (where applicable)

4.1. curriculum-based	
4.2. competence-based	

5. Requisites (where applicable)

5.1. course-related	Room equipped with video projector / board
5.2. seminar/laboratory-based	Room equipped with board

6. Specific competences to be acquired

or operation competended to be acquired				
Professional competences	CP3 (2 ECTS), CP 16 (2 ECTS), CP29 (2 ECTS)			
Transversal competences	Not applicable			

7. Course objectives (as per the program specific competences grid)

7.1 General objectives of the course	Learning the fundamental concepts in graph theory, with a sense of some
	of its modern applications.

7.2 Specific objectives of the course	Our aims in this course are twofold. First, to discuss some of the major results of graph theory, and to introduce the language, methods and terminology of the subject. Second, to emphasize various approaches (algorithmic, probabilistic, etc) that have proved fruitful in modern graph theory: these modes of thinking about the subject have also proved successful in areas of informatics, and we hope that students will find the techniques learnt in this course to be useful in their future works.

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
Preliminaries.	Lecture, conversation	
General notions.		
Ways for representing a graph		
Basic concepts in Graph Theory	Lecture, conversation	
Cyclomatic number		
Graph traversal	Lecture, conversation	
Breadth First Traversal		
Depth First Traversal		
Minimum distances in graphs	Lecture, conversation	
Connected components	Lecture, conversation	
Bipartite graphs	Lecture, conversation	
Maximum matching problem in a bipartite graph		
Hamiltonian paths and circuits	Lecture, conversation	
Chen algorithm		
Foulkes algorithm		
Kaufmann algorithm		
Flow networks	Lecture, conversation	
Bellman-Kalaba algorithm		
Ford algorithm		
Dijkstra algorithm		
Maximum flow in transport networks	Lecture, conversation	
Trees. Deffinitions and theorems.	Lecture, conversation	
Traversal of a dirrected tree	Lecture, conversation	
Trees of minimum values	Lecture, conversation	
Kruskal algorithm		
Sollin algorithm		
Binary trees	Lecture, conversation	
Structural trees	Lecture, conversation	
D. C		

References

- 1. Behzad, M., Chartrand, G., Lesniak-Foster, L., *Graphs and digraphs*, Prindle, Weber and Schmidt, Boston, Massachusetts, 2014.
- 2. Bollobas, B., *Graph theory. An introductory course*, Springer-Verlag, New York, Heidelberg, Berlin, 2012.
- 3. Christo des, N., Graph theory. An algorithmic approach, Academic Press, 2011.
- 4. Ford, L., Fulkerson, D. R., Flows in networks, Princeton Univ. Press, 1992.
- 5. Wainberg, D., Breaz, D., Alb Lupaş, A., Elemente de Algoritmica grafurilor, Ed. Aeternitas, 2010.

Seminars-laboratories	Teaching methods	
Preliminaries.	Exercises and problems	
General notions.		
Ways for representing a graph		
Basic concepts in Graph Theory	Exercises and problems	
Cyclomatic number		
Graph traversal	Exercises and problems	
Breadth First Traversal		
Depth First Traversal		
Minimum distances in graphs	Exercises and problems	
Connected components	Exercises and problems	
•	,	
Bipartite graphs	Exercises and problems	
Maximum matching problem in a bipartite graph		
maximum matering problem in a bipartite graph		

Chen algorithm Foulkes algorithm Kaufmann algorithm Flow networks Bellman-Kalaba algorithm Ford algorithm Dijkstra algorithm Dijkstra algorithm Maximum flow in transport networks Trees. Deffinitions and theorems. Traversal of a dirrected tree Exercises and problems Traversal of a dirrected tree Exercises and problems Trees of minimum values Kruskal algorithm Sollin algorithm Binary trees Exercises and problems Exercises and problems	Hamiltonian paths and circuits	Exercises and problems
Kaufmann algorithm Flow networks Bellman-Kalaba algorithm Ford algorithm Dijkstra algorithm Maximum flow in transport networks Trees. Deffinitions and theorems. Traversal of a dirrected tree Trees of minimum values Kruskal algorithm Binary trees Exercises and problems	Chen algorithm	
Flow networks Bellman-Kalaba algorithm Ford algorithm Dijkstra algorithm Maximum flow in transport networks Trees. Deffinitions and theorems. Exercises and problems Traversal of a dirrected tree Exercises and problems Trees of minimum values Kruskal algorithm Sollin algorithm Binary trees Exercises and problems Exercises and problems Exercises and problems Exercises and problems		
Bellman-Kalaba algorithm Ford algorithm Dijkstra algorithm Maximum flow in transport networks Trees. Deffinitions and theorems. Exercises and problems Traversal of a dirrected tree Exercises and problems Trees of minimum values Kruskal algorithm Sollin algorithm Binary trees Exercises and problems Exercises and problems Exercises and problems	Kaufmann algorithm	
Bellman-Kalaba algorithm Ford algorithm Dijkstra algorithm Maximum flow in transport networks Trees. Deffinitions and theorems. Exercises and problems Traversal of a dirrected tree Exercises and problems Trees of minimum values Kruskal algorithm Sollin algorithm Binary trees Exercises and problems Exercises and problems Exercises and problems		
Bellman-Kalaba algorithm Ford algorithm Dijkstra algorithm Maximum flow in transport networks Trees. Deffinitions and theorems. Exercises and problems Traversal of a dirrected tree Exercises and problems Trees of minimum values Kruskal algorithm Sollin algorithm Binary trees Exercises and problems Exercises and problems Exercises and problems	Flow networks	Exercises and problems
Ford algorithm Dijkstra algorithm Maximum flow in transport networks Exercises and problems Trees. Deffinitions and theorems. Exercises and problems Traversal of a dirrected tree Exercises and problems Trees of minimum values Kruskal algorithm Sollin algorithm Binary trees Exercises and problems Exercises and problems Exercises and problems	Bellman-Kalaba algorithm	
Maximum flow in transport networks Exercises and problems		
Trees. Deffinitions and theorems. Exercises and problems	Dijkstra algorithm	
Trees. Deffinitions and theorems. Exercises and problems		
Traversal of a dirrected tree Exercises and problems	Maximum flow in transport networks	Exercises and problems
Traversal of a dirrected tree Exercises and problems		
Trees of minimum values Kruskal algorithm Sollin algorithm Binary trees Exercises and problems Exercises and problems	Trees. Deffinitions and theorems.	Exercises and problems
Trees of minimum values Kruskal algorithm Sollin algorithm Binary trees Exercises and problems Exercises and problems		
Kruskal algorithm Sollin algorithm Binary trees Exercises and problems	Traversal of a dirrected tree	Exercises and problems
Kruskal algorithm Sollin algorithm Binary trees Exercises and problems		
Sollin algorithm Binary trees Exercises and problems		Exercises and problems
Binary trees Exercises and problems		
	Sollin algorithm	
Structural trees Exercises and problems	Binary trees	Exercises and problems
Structural trees Exercises and problems		
	Structural trees	Exercises and problems

References

- 1. Behzad, M., Chartrand, G., Lesniak-Foster, L., *Graphs and digraphs*, Prindle, Weber and Schmidt, Boston, Massachusetts, 2014.
- 2. Bollobas, B., Graph theory. An introductory course, Springer-Verlag, New York, Heidelberg, Berlin, 2012.
- 3. Christo des, N., Graph theory. An algorithmic approach, Academic Press, 2011.
- 4. Ford, L., Fulkerson, D. R., Flows in networks, Princeton Univ. Press, 1992.
- 5. Wainberg, D., Breaz, D., Alb Lupas, A., Elemente de Algoritmica grafurilor, Ed. Aeternitas, 2010.

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field

Applying the discipline Graph algorithms in building and developing of a computer network is essential. Any company or institution that owns a computer network would need graduates who have successfully completed this subject. Also, a lot of programming techniques are based on the algorithms presented here. Therefore, we can conclude that Graph algorithms is a fundamental course of computer science.

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade	
10.4 Course	Final evaluation	Written paper	50%	
10.5 Seminar/laboratory	Continuous assessment	Tests during the semester	50%	
10.6 Minimum performance standard: Modelling and solving some medium complexity level problems, using the mathematical and computer sciences knowledge.				

10.6 Minimum performance sta computer sciences knowledge.	ndard: Modelling and solving some medium o	complexity level problems, using the mathematica	
Submission date	Course leader signature	Seminar tutor signature	
Date of approval by Department members		Department director signature	
Date of approval by Fa	aculty councile	Dean signature	