SYLLABUS PROBABILISTIC AND MATHEMATICAL STATISTICS

Academic year 2024-2025

Year of study I / Semester II

1. Information on academic programme

1.1. University	"1 Decembrie 1918" of Alba Iulia
1.2. Faculty	Faculty Of Informatics and Engineering
1.3. Department	Informatics, Mathematics and Electronics Department
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science / 2512/ Software developers
	Analyst 251201
	Computer System Programmer 251204
	Computer System Engineer 251203

2. Information of Course Matter

2.1. Course		Probabilistic and mathematical statistics		2.2. Code			CSE112	2	
2.3. Course Leader	urse Leader Dr. Aldea Mihaela								
2.4. Seminar Tutor			Dr. Aldea Mihaela						
2.5. Academic Year	-	2.6. Semester	Π	2.7. Type of Evaluation (E – final exam/ CE - colloquy examinatio CA - continuous assessm	on / nent)	Ш	2.8. Type of cou (C– Compulsory Op – optional, F - Facultative)	urse y,	С

3. Course Structure (Weekly number of hours)

3.1. Weekly number of hours	3	3.2. course	2	3.3. seminar, laboratory	1
3.4. Total number of hours in the curriculum	42	3.5. course	28	3.6. seminar, laboratory	14
Allocation of time:					hours
Individual study of readers					25
Documentation (library)					23
Home assignments, Essays, Portfolios					29
Tutorials					-
Assessment (examinations)					6
Other activities					-

3.7 Total number of hours for individual study	83
3.8 Total number of university activities	42
3.9 Total number of hours per semester	125
3.10 Number of ECTS	5

4. Prerequisites (where applicable)

4.1. curriculum-based	-
4.2. competence-based	-

5. Requisites (where applicable)

5.1. course-related	Room equipped with video projector / board
5.2. seminar/laboratory-based	Room equipped with board

6. Specific competences to be acquired

Professional competences	CP1 - analyze business processes: Study the needs and expectations of customers regarding a product or service to identify and resolve inconsistencies and possible disagreements of the interested parties involved.
	CP 2 - create data models: Use specific techniques and methodologies to analyze the data requirements of an organization's operational processes, to create models for these data, such as conceptual, logical and physical models. These models have a specific structure and format.
Transversal competences	

7. Course objectives (as per the programme specific competences grid)

,,,,,,,	· · · · · · · · · · · · · · · · · · ·
7.1 General objectives of the course	This course is designed to introduce students to various topics in probability and uncertainty that they will encounter in Computer Science theory. The concepts are illustrated with actual examples from the specialized literature. Exercises are designed to encourage the student to begin thinking about probability within a theoretical context. Today, the theory of probability has found many applications in science and engineering. In this course, the students will learn the basic terminology and concepts of probability theory and statistics.
7.2 Specific objectives of the course	 The common goals for students in probability and statistics courses include: becoming competent in the topics covered in the course, demonstrating skills and attitudes which contribute to professional, ethical behavior, the ability to communicate mathematically, in both written and verbal form, learning to appreciate the beauty and utility of mathematics, define probability, outcome space, events, and probability functions. using combinations to evaluate the probability of outcomes in coin-flipping experiments. calculating the union of events and conditional probability. applying Bayes's theorem to simple situations. evaluating random processes governed by binomial, multinomial, geometric, exponential, normal, and Poisson distributions. defining the law of large numbers and the central limit theorem.

8. Course contents		
8.1 Course (learning units)	Teaching methods	Remarks
Field of events	Lecture, conversation	2 hours
Probability field	Lecture, conversation	2 hours
Rules for assigning and calculating probabilities	Lecture, conversation	2 hours
Classical probability distributions	Lecture, conversation	2 hours
Discrete random variables	Lecture, conversation	2 hours
Continuous random variables	Lecture, conversation	2 hours
Numerical characteristics of random variables	Lecture, conversation	2 hours
The characteristic function. Moment generating function	Lecture, conversation	2 hours
The law of large numbers for random variables. Limit theorems	Lecture, conversation	2 hours
Statistical selection theory	Lecture, conversation	2 hours
Glivenko's theorem. Kolmogorov's theorem	Lecture, conversation	2 hours
Estimation theory	Lecture, conversation	2 hours
Confidence intervals	Lecture, conversation	2 hours
Statistical hypothesis testing	Lecture, conversation	2 hours
		•

References

Wackerly, D., Mendenhall, W., *Mathematical statistics with applications*, Thomson publ., 2016.
 Lisei, N., *Probability theory*, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2004.
 Lisei, H., Micula, S., Soos, A., *Probability Theory trough Problems and Applications*, Cluj University Press, 2006.

Seminars

Teaching methods

Field of events	Exercises and problems	1 hour
Probability field	Exercises and problems	1 hour
Rules for assigning and calculating probabilities	Exercises and problems	1 hour
Classical probability distributions	Exercises and problems	1 hour
Discrete random variables	Exercises and problems	1 hour
Continuous random variables	Exercises and problems	1 hour
Numerical characteristics of random variables	Exercises and problems	1 hour
The characteristic function. Moment generating function	Exercises and problems	1 hour
The law of large numbers for random variables. Limit theorems	Exercises and problems	1 hour
Statistical selection theory	Exercises and problems	1 hour
Glivenko's theorem. Kolmogorov's theorem	Exercises and problems	1 hour
Estimation theory	Exercises and problems	1 hour
Confidence intervals	Exercises and problems	1 hour
Statistical hypothesis testing	Exercises and problems	1 hour

References

1. Wackerly , D., Mendenhall, W., Mathematical statistics with applications, Thomson publ., 2016.

2. Lisei, N., Probability theory, Casa Cărții de Știință, Cluj-Napoca, 2004.

3. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field

The accumulation by students of knowledge related to this discipline requires their preparation for the labor market, so that they can solve the problems that arise in practice by creating appropriate mathematical models.

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade		
10.4 Course	Final evaluation	Written paper	50%		
10.5 Seminar/laboratory	Continuous assessment	Tests during the semester	50%		
10.6 Minimum performance standard: Modelling and solving some medium complexity level problems, using the mathematical and					
computer sciences knowledge.					

Submission date

Course leader signature

Seminar tutor signature

Aldea Mihaela

Aldea Mihaela

Date of approval by Department members

Aldea Mihaela

Department director signature