SYLLABUS

DATABASES

1. Information on academic programme

1.1. University	"1 Decembrie 1918" University of Alba Iulia
1.2. Faculty	Faculty of Informatics and Engineering
1.3. Department	Informatics, Mathematics and Electronics
1.4. Field of Study	Computer Science
1.5. Cycle of Study	Undergraduate
1.6. Academic programme / Qualification	Computer Science /ESCO-08: 2511/ Systems Analyst, 2512/
	Software developers
	Analyst 251201
	Computer System Programmer 251204
	Computer System Engineer 251203

2. Information of Course Matter

2.1. Course		Databases		2.2.	Code		CSE 20	1
2.3. Course Leader Muntean Maria-Viorela								
2.4. Seminar Tutor Muntean Maria-Viorela								
2.5. Academic Year	II	2.6. Semester	I	2.7. Type of Evaluation (E – final exam/ CE - colloquy examination / CA -continuous assessment)	E	2.8. Type of (C-Compulsory, F-Facultative)		С

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of	56	3.5. course	28	3.6. seminar, laboratory	28
hours in the curriculum					
Allocation of time:					Hours
Individual study of readers					30
Documentation (library)					10
Home assignments, Essays, Portfolios					25
Tutorials					2
Assessment (examinations)					2
Other activities					-

3.7 Total number of hours for individual study	69
3.8 Total number of hours in the curriculum	56
3.9 Total number of hours per semester	125
3.10umber of ECTS	5

4. Prerequisites (where applicable)

4.1. curriculum-based	-
4.2. competence-based	C5. Design and management of databases

5. Requisites (*where applicable*)

5.1. course-related	Room equipped with video projector / board / Microsoft Teams Platform		
5.2. laboratory-based	Laboratory – computers, Software: MySQL server, MySQL graphical user interfaces (MySQL Workbench, MySQL Front,), Internet access. / Microsoft Teams Platform		

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

competences gria,	
Professional competences	C5.1. The identification of base concept for organizing data in databases.
	C5.2. The identification and explanation of base models for the organizing and
	management of data in databases.
	C5.3 The use of methodologies and database design environments for specific
	problems.
	C5.4. The evaluation of quality for various database management systems
	regarding structure, functionality and extensibility.
	C5.5. The development of various database related projects.
Transversal competences	

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of the course	- Technical equipment: laptop/PC, video projector
	- For students: course support in editable format
7.2 Specific objectives of the course	- Technical equipment: laptop/PC, video projector

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
1. Database architecture	Lecture, conversation,	2h
	exemplification	
2. Data models	Lecture, conversation,	2h
	exemplification	
3. Relational databases	Lecture, conversation,	2h
	exemplification	
4. Relational algebra	Lecture, conversation,	2h
	exemplification	
5. Relational keys	Lecture, conversation,	2h
	exemplification	
6. Database normalization. First Normal Form	Lecture, conversation,	2h
	exemplification	
7. Database normalization. Second Normal Form	Lecture, conversation,	2h
	exemplification	
8. Database normalization. Third Normal Form	Lecture, conversation,	2h

		avamnlification		
	9. Select SQL	exemplification	4h	
	5. Select SQL	Lecture, conversation, exemplification	411	
	10. Relational database schemes	Lecture, conversation,	4h	
	10. Relativital database selectives	exemplification	711	
	11. Conceptual design of databases	Lecture, conversation,	2h	
	11. Conceptual design of databases	exemplification	211	
		Lecture, conversation,	2h	
	12. Logical database design	exemplification		
La	boratories	Teaching methods		
1.	MySQL server installation and configuration. The MySQL	Project-work, computer-based	2h	
	graphical administration interfaces.	activities, laboratory activities		
2.	Creating a new MySQL database using GUI. Creating	Project-work, computer-based	2h	
	MySQL tables using GUI. MySQL data types.	activities, laboratory activities		
3.	Dropping a MySQL table using GUI. Renaming a table	Project-work, computer-based	2h	
	using GUI. Modifying the table structure using GUI.	activities, laboratory activities		
4.	Defining primary and foreign keys using GUI. Creating	Project-work, computer-based	2h	
	MySQL foreign key relationships. The databases export.	activities, laboratory activities		
5.	The databases restore. Creating a database diagram. Insert, update, and delete table data using GUI.	Project-work, computer-based	2h	
٥.	insert, update, and defete table data using GO1.	activities, laboratory activities	211	
6	Database normalization. The First Normal Boyce-Codd	Project-work, computer-based	2h	
0.	Form (1NF). Steps and examples. Databases	activities, laboratory activities	211	
	implementation in the 1NF.	detrices, aboratory activities		
7.	Database normalization. The Second Normal Boyce-Codd	Project-work, computer-based	2h	
	Form (2NF). Steps and examples. Databases	activities, laboratory activities		
0	implementation in the 2NF.		21	
8.	Database normalization. The Third Normal Boyce-Codd Form (3NF). Steps and examples. Databases	Project-work, computer-based	2h	
	implementation in the 3NF.	activities, laboratory activities		
9.		Project-work, computer-based	2h	
	DATABASE command). Setting the database as default	activities, laboratory activities		
	(USE command). Dropping a database (DROP command).			
	Creating tables using SQL CREATE TABLE.			
10.	Modifying the table structure (<i>ALTER TABLE</i> statement).	Project-work, computer-based	2h	
	View table structure (<i>DESCRIBE</i> command). Renaming a	activities, laboratory activities		
	table (<i>RENAME TABLE</i> command). Deleting a table (<i>DROP TABLE</i> command).			
11.	Inserting data into tables (INSERT INTO statement).	Project-work, computer-based	2h	
	Viewing table data (<i>BROWSE</i> command). Modifying table	activities, laboratory activities		
	data (<i>UPDATE</i> statement). Deleting table data (<i>DELETE</i>	,		
	command).			
12.	Queries (SQL SELECT statement). SELECT list. SQL	Project-work, computer-based	2h	
1.0	WHERE clause. SQL ORDER BY clause.	activities, laboratory activities	21	
13.	Queries (SQL SELECT statement). SQL JOIN (CROSS	Project-work, computer-based	2h	
	JOIN, JOIN USING, NATURAL JOIN, JOIN ON, OUTER JOIN ON).	activities, laboratory activities		
	JOIN ON,			

Views (SQL CREATE VIEW statement).		
14. Project presentation and evaluation	Project-work, computer-based	2h
	activities, laboratory activities	

References

- 1. SQL COOKBOOK: Query Solutions and Techniques for All SQL Users, Anthony MOLINARO; Robert de GRAAF (2021), ISBN: 9781492077442.
- 2. Colin Titchie, *Relational Database Principle*, 2nd edition, UK by TJ International, Padslow, Cornwall, 2004.
- 3. Terry Halpin, Tony Morgan, *Information Modeling and Relational Databases*, second edition, Morgan Kaufmann Publishers is an imprint of Elsevier. 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA.
- 4. Mark Levene and George Loizou, A Guided Tour of Relational Databases and Beyond, Springer-Verlag Berlin Heidelberg.
- 5. Kroenke, David M, Database Processing: Fundamentals, Design & Implementation, New Jersey: Prentice Hall, 2000.
- 6. Saeed K. Rahimi, Frank S. Haug, Distributed Database Management Systems: A Practical Approach, Hoboken, New Jersey: Wiley Publishing INC, 2010.
- 7. Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow, *Distributed Database: Database Management System, Computer Storage, Routing Protocol*, Beau Bassin, Mauritius: Betascript Publishing, 2010.
- 8. Weinberg, P., Groff, J., Oppel, A., *SQL The Complete Reference*, Third Edition, The McGraw-Hill Companies, Inc., ISBN: 978-0-07-159255-0, 2010.
- 9. Schneider, R., D., MySQL Database Design and Tuning, Sams Publishing, ISBN: 0-672-32765-1, 2005.
- 10. Date, C., J., SQL and Relational Theory, 1st Edition, O'Reilly Media, Inc., ISBN: 978-0-596-52306-0, 2009.
- 9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final			
			grade			
10.4 Course	Final evaluation	Written evaluation	50%			
10.5 Seminar/laboratory	Laboratory activities	Practical evaluation	50%			
	portfolio					
10.6 Minimum performance standard: minimum 5 at written evaluation and minimum 5 at practical evaluation						

Submission date	Course leader signature	Seminar tutor signature
Date of approval by	Department members	Department director signature