SYLLABUS

FUNDAMENTAL ALGORITHMS 2024-2025

1. Program General Data

1.1. University	"1 Decembrie 1918" of Alba Iulia	
1.2. Faculty	Faculty of Informatics and Engineering	
1.3. Department	Informatics, Mathematics and Electronics Department	
1.4. Area	Computer Science	
1.5. Level	Undergraduate	
1.6. Specialization	Computer Science	
	ESCO-08: 2511/ Systems Analyst, 2512/ Software developers	
	Analyst 251201	
	Computer System Programmer 251204	
	Computer System Engineer 251203	

2. Subject General Data

2.1. Subject		Fundamental a	Fundamental algorithms		. Code		CSE202	2
2.3. Course holder/	2.3. Course holder/ Lecturer/ Instructor's Domşa Ovidiu		vidiu					
Name								
2.4. Teaching Assista	ant's l	Name	Domșa Ovidiu					
2.5. Year	II	2.6. Semester	Ι	2.7. Evaluation form (E – final exam/C- examination /VP)	E	2.8. Status (C Compulsory, C optional, F - Fa)p –	С

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	4	3.2. course	2	3.3. seminar, laboratory	2
hours					
3.4. Total number of	56	3.5. course	28	3.6. seminar, laboratory	28
hours according to the					
curricula					
Time distribution:					Hours
Individual study using the lecture notes					20
Documentation (library)				20	
Homework, Essays, Portfolios				20	
Tutoring				-	
Evaluation (exams)				9	
Other activities				-	

3.7 Total number of hours for individual study	69
3.8 Total number of hours according to the curricula	56
3.9 Total number of hours per semester	125
3.10 Credits	5

4. Prerequisites

4.1. Curricula prerequisites	Imperative and procedural programming
	Algorithms and data structures
	Graph algorithms
4.2. according to the general competencies	

5. Conditions

5.1. Conditions to support teaching	Room equipped with video projector/board.
5.2. Conditions for supporting	Laboratory – computers. Software: Code Blocks, Internet
seminar/laboratory activities	acces.

6. Competențe specifice acumulate (cele alese de titular din grila de competente)

Professional competences	- Development of skills required to solve complex problems using the algorithms studied.
	- Identify the addressed problems with the studied techniques and algorithms.
	-The student will be able to translate in algorithmic language (pseudocode,
	programming language) the solution of complex problems.
	- Thoroughly study of data structures and algorithms concepts and the methods
	used for handling them (hash tables, trees, graphs).
Transversal competences	Cognitive skills: acquisition of basic and specific knowledge about the concept of
	fundamental algorithm; the ability to identify the applicability of the studied
	algorithms in real problems; understanding the need of using fundamental
	algorithms when addressing problems from an algorithmic perspective; acquiring
	basic knowledge on the concept of algorithms complexity.
	Affective skills: develop the capacity of analysis and understanding of a highly
	complex real problems and effectively address it from an algorithmic perspective.
	Team spirit: encouraging students to work in design, analysis and programming
	teams. Awarness of the importance of the knowledge and thoroughly study of
	fundamental algorithms.

7. Course objectives

6.1 General course objectives	- Develop algorithmic thinking and skills for developing
	complex algorithms.
	- Learning basic tools for developing fundamental algorithms.
	- Knowledge of types of fundamental algorithms and their
	development methods.
	- Use of an advanced programming language for implementing
	the studied algorithms.
6.2 Specific course objectives	

8. Course contents

Lectures	Didactic methods used	Observații
General principles for algorithm development.	Lecture, discussions, examples	
Complexity of algorithms. Asymptotic analysis of worst	Lecture, discussions, examples	
case scenario.		
Numerical algorithms. Optimization of numerical	Lecture, discussions, examples	

algorithms. Primality. Bell numbers. Stirling numbers.	
Catalan numbers. Numbers with special properties.	
Sorting: HeapSort, QuickSort, RadixSort, Median-	Lecture, discussions, examples
Algorithms, Lower Bounds.	
Analysis of sorting and searching algorithms complexity.	Lecture, discussions, examples
Parallel sorting: enumeration sort, odd-even transposition	Lecture, discussions, examples
sort.	
Parallel sorting: bitonic sort, quicksort on a hypercube.	Lecture, discussions, examples
Binary search trees.	Lecture, discussions, examples
AVL trees. Red-black trees. B-trees.	Lecture, discussions, examples
Hash tables. Collision resolution. Hash functions.	Lecture, discussions, examples
Graph algorithms: Transitive Closure, Shortest Path	Lecture, discussions, examples
Problems, Minimum Spanning Trees.	
Branch&Bound algorithms. Exemples of problems	Lecture, discussions, examples
solved with the Branch&Bound method.	
NP-complete algorithms.	Lecture, discussions, examples
Analysis, evaluation, and feed-back.	Lecture, discussions, examples
References	

References

- 1. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.
- 2. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.
- Donald E. Knuth, <u>The Art of Computer Programming</u>, Volumes 1–3, Addison-Wesley Professional Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2: Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley Professional.

Seminars-laboratories	Didactic methods used
General principles for algorithms development.	laboratory works
Complexity of algorithms.	laboratory works
Numerical algorithms. Goldbach conjecture. Bell	laboratory works
numbers, Catalan numbers, Entringer numbers, Stirling.	
Combinatorial calculus. Modular exponentiation. Large	
numbers operations.	
Sorting: HeapSort, QuickSort, RadixSort, BrickSort	laboratory works
BucketSort, CountSort.	
Analysis of sorting and searching algorithms complexity.	laboratory works
Graph algorithms: graphs representations, graphs	laboratory works
traversal, shortest paths.	
Graph algorithms: cycles, Eulerian graph, Hamiltonian	laboratory works
graph, connectivity, strong connectivity, coupling, flow.	
Binary search trees.	laboratory works
Red-black trees. B-trees.	laboratory works
Evaluation of arithmetic expressions. Polish notation for	laboratory works
arithmetic expressions.	
Practical applications. Examples of practical problems	laboratory works
solved with efficient methods.	
References	

1. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.

2. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.

- Donald E. Knuth, <u>The Art of Computer Programming</u>, Volumes 1–3, Addison-Wesley Professional Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2: Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and Searching (2nd Edition), 1998. Addison-Wesley Professional.
- 9. Corroborating Course content expectations to the epistemic community representatives, professional associations and employers representative for the curricula
- Not applicable.

10. Assessment

Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage from the	
			final mark	
10.4 Course	Final evaluation	Written exam	60%	
	-	-	-	
10.5 Seminar/laboratory	Continuous assessment	Portfolio of laboratory	40%	
		practical works		
	-		-	
10.6 Minimum performance standard:				

Completion date

Instructor's signature

Teaching assistant's signature

.....

Date of approval within the department

Head of departament's signature

.....