
SYLLABUS

FUNDAMENTAL ALGORITHMS

2024-2025

1. Program General Data

1.1. University „1 Decembrie 1918” of Alba Iulia

1.2. Faculty Faculty of Informatics and Engineering

1.3. Department Informatics, Mathematics and Electronics Department

1.4. Area Computer Science

1.5. Level Undergraduate

1.6. Specialization Computer Science

ESCO-08: 2511/ Systems Analyst, 2512/ Software developers

Analyst 251201

Computer System Programmer 251204

Computer System Engineer 251203

2. Subject General Data

2.1. Subject Fundamental algorithms 2.2. Code CSE202

2.3. Course holder/ Lecturer/ Instructor’s
Name

Domşa Ovidiu

2.4. Teaching Assistant’s Name Domșa Ovidiu

2.5. Year II 2.6. Semester I 2.7. Evaluation

form (E – final

exam/C-

examination /VP)

E 2.8. Status (C–

Compulsory, Op –

optional, F - Facultative)

C

3. Course Structure (Weekly number of hours)

3.1. Weekly number of

hours
4 3.2. course 2 3.3. seminar, laboratory 2

3.4. Total number of

hours according to the

curricula

56 3.5. course 28

3.6. seminar, laboratory 28

Time distribution: Hours

Individual study using the lecture notes 20

Documentation (library) 20

Homework, Essays, Portfolios 20

Tutoring -

Evaluation (exams) 9

Other activities……. -

3.7 Total number of hours for individual study 69

3.8 Total number of hours according to the curricula 56

3.9 Total number of hours per semester 125

3.10 Credits 5

4. Prerequisites

4.1. Curricula prerequisites Imperative and procedural programming

Algorithms and data structures

Graph algorithms

4.2. according to the general competencies

5. Conditions

5.1. Conditions to support teaching Room equipped with video projector/board.

5.2. Conditions for supporting

seminar/laboratory activities

 Laboratory – computers. Software: Code Blocks, Internet

acces.

6. Competenţe specifice acumulate (cele alese de titular din grila de competente)

Professional competences - Development of skills required to solve complex problems using the algorithms

studied.

- Identify the addressed problems with the studied techniques and algorithms.

-The student will be able to translate in algorithmic language (pseudocode,

programming language) the solution of complex problems.

- Thoroughly study of data structures and algorithms concepts and the methods

used for handling them (hash tables, trees, graphs).

Transversal competences Cognitive skills: acquisition of basic and specific knowledge about the concept of

fundamental algorithm; the ability to identify the applicability of the studied

algorithms in real problems; understanding the need of using fundamental

algorithms when addressing problems from an algorithmic perspective; acquiring

basic knowledge on the concept of algorithms complexity.

Affective skills: develop the capacity of analysis and understanding of a highly

complex real problems and effectively address it from an algorithmic perspective.

Team spirit: encouraging students to work in design, analysis and programming

teams. Awarness of the importance of the knowledge and thoroughly study of

fundamental algorithms.

7. Course objectives

6.1 General course objectives - Develop algorithmic thinking and skills for developing

complex algorithms.

- Learning basic tools for developing fundamental algorithms.

- Knowledge of types of fundamental algorithms and their

development methods.

- Use of an advanced programming language for implementing

the studied algorithms.

6.2 Specific course objectives

8. Course contents

Lectures Didactic methods used Observaţii

General principles for algorithm development. Lecture, discussions, examples

Complexity of algorithms. Asymptotic analysis of worst

case scenario.

Lecture, discussions, examples

Numerical algorithms. Optimization of numerical Lecture, discussions, examples

algorithms. Primality. Bell numbers. Stirling numbers.

Catalan numbers. Numbers with special properties.

Sorting: HeapSort, QuickSort, RadixSort, Median-

Algorithms, Lower Bounds.

Lecture, discussions, examples

Analysis of sorting and searching algorithms complexity. Lecture, discussions, examples

Parallel sorting: enumeration sort, odd-even transposition

sort.

Lecture, discussions, examples

Parallel sorting: bitonic sort, quicksort on a hypercube. Lecture, discussions, examples

Binary search trees. Lecture, discussions, examples

AVL trees. Red-black trees. B-trees. Lecture, discussions, examples

Hash tables. Collision resolution. Hash functions. Lecture, discussions, examples

Graph algorithms: Transitive Closure, Shortest Path

Problems, Minimum Spanning Trees.

Lecture, discussions, examples

Branch&Bound algorithms. Exemples of problems

solved with the Branch&Bound method.

Lecture, discussions, examples

NP-complete algorithms. Lecture, discussions, examples

Analysis, evaluation, and feed-back. Lecture, discussions, examples

References

1. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.

2. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.

3. Donald E. Knuth, The Art of Computer Programming, Volumes 1–3, Addison-Wesley Professional

Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2:

Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and

Searching (2nd Edition), 1998. Addison-Wesley Professional.

Seminars-laboratories Didactic methods used

General principles for algorithms development. laboratory works

Complexity of algorithms. laboratory works

Numerical algorithms. Goldbach conjecture. Bell

numbers, Catalan numbers, Entringer numbers, Stirling.

Combinatorial calculus. Modular exponentiation. Large

numbers operations.

laboratory works

Sorting: HeapSort, QuickSort, RadixSort, BrickSort

BucketSort, CountSort.

laboratory works

Analysis of sorting and searching algorithms complexity. laboratory works

Graph algorithms: graphs representations, graphs

traversal, shortest paths.

laboratory works

Graph algorithms: cycles, Eulerian graph, Hamiltonian

graph, connectivity, strong connectivity, coupling, flow.

laboratory works

Binary search trees. laboratory works

Red-black trees. B-trees. laboratory works

Evaluation of arithmetic expressions. Polish notation for

arithmetic expressions.

laboratory works

Practical applications. Examples of practical problems

solved with efficient methods.

laboratory works

References

http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

1. Cormen T.H., Leiserson E.C., Rivest R.R., Introduction in algorithms, MIT Press, 2001.

2. Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programing, Academic Press, 1972.

3. Donald E. Knuth, The Art of Computer Programming, Volumes 1–3, Addison-Wesley Professional

Volume 1: Fundamental Algorithms (3rd edition), 1997. Addison-Wesley Professional, Volume 2:

Seminumerical Algorithms (3rd Edition), 1997. Addison-Wesley Professional, Volume 3: Sorting and

Searching (2nd Edition), 1998. Addison-Wesley Professional.

9. Corroborating Course content expectations to the epistemic community representatives,

professional associations and employers representative for the curricula

- Not applicable.

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage from the

final mark

10.4 Course Final evaluation Written exam 60%

- - -

10.5 Seminar/laboratory Continuous assessment Portfolio of laboratory

practical works

40%

- -

10.6 Minimum performance standard:

Completion date Instructor’s signature Teaching assistant’s signature

 ……………..…………. ………………………….

Date of approval within the department Head of departament’s signature

…………….. ……………………………….

http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

