
 SYLLABUS

Object Oriented Programming

1. Information on academic programme

1.1. University „1 Decembrie 1918” din Alba Iulia

1.2. Faculty Faculty of Computer Science and Engeneering

1.3. Department Department of Computer Science, Matematics and Applied

Electronics / Departamentul de Informatica, Matematica si

Electronica

1.4. Field of Study Computer Science

1.5. Cycle of Study Bachelor

1.6. Academic program / Qualification 2511/ Systems Analyst, 2512/ Software developers
Analyst 251201

Computer System Programmer 251204

Computer System Engineer 251203

2. Information of Course Matter

2.1. Course Object Oriented Programming 2.2. Code CSE 204

2.3. Course Leader Rotar Corina

2.4. Seminar Tutor Cristea Daniela

2.5. Academic

Year

II 2.6. Semester I 2.7. Type of

Evaluation

 (E – final exam/

CE - colloquy examination /

CA -continuous assessment)

E 2.8. Type of course
(C– Compulsory, Op – optional,

F - Facultative)

C

3. Course Structure (Weekly number of hours)

3.1. Weekly number of

hours
5 3.2. course 2 3.3. seminar, laboratory 3

3.4. Total number of

hours in the curriculum
70 3.5. course 28

3.6. seminar, laboratory 42

Allocation of time: Hours

Individual study of readers 10

Documentation (library) 20

Home assignments, Essays, Portfolios 20

Tutorials -

Assessment (examinations) 5

Other activities……. -

3.7 Total number of hours for individual

study
55

3.8 Total number of hours in the

curriculum
70

3.9 Total number of hours per semester 125

3.10 Number of ECTS 5

4. Prerequisites (where applicable)

4.1. curriculum-based Data Structures

4.2. competence-based C1 Programming in high-level languages

C1.1 The appropriate description of programming paradigms and of specific language
mechanisms, as well as the identification of differences between semantic and syntactic

aspects.

C1.2 The explaining of existing software applications using different abstraction layers
(architecture, packages, classes, methods), correctly using base knowledge.

C1.3 The development of correct source codes and the testing of various components in a

known programming language, given a set of design specifications.

C1.4 The testing of various applications given specific testing plans

C1.5 Developing program units and their documentation.

5. Requisites (where applicable)

5.1. course-related Room equipped with video projector / boar

5.2. seminar/laboratory-based Laboratory – computers, Software: Visual Studio 2010,

Codeblocks/DevC++, Internet access.

6. Specific competences to be aquired (chosen by the course leader from the programme general

competences grid)
Professional competences C1 Programming in high-level languages

C2 Development and maintenance of computer applications

Transversal competences Not applicable

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of the course Develop students' ability to design software that is dedicated to solving

medium complexity problems by using object oriented paradigm.

Deepening the concept of class and object, and gaining the skills to design

classes and associated libraries.

Creating a rigorous and efficient object oriented programming style

7.2 Specific objectives of the course Developing students' ability to effectively manage information by using

classes and relations between classes.

Drawing a coherent documentation on the applications of average

complexity.

8. Course contents

8.1 Course (learning units) Teaching methods Remarks

1. Introduction to Object-Oriented Programming

(OOP)

Lecture, conversation,

exemplification

2h

2. Basics of C++ and Syntax Overview Lecture, conversation,

exemplification

2h

3. Classes and Objects Lecture, conversation,

exemplification

2h

4. Constructors and Destructors in Depth Lecture, conversation,

exemplification

2h

5. Encapsulation and Data Hiding Lecture, conversation, 2h

exemplification

6. Operator Overloading Lecture, conversation,

exemplification

2h

7. Inheritance Lecture, conversation,

exemplification

2h

8. Polymorphism: Function Overloading and

Overriding

Lecture, conversation,

exemplification

2h

9. Virtual Functions and Runtime Polymorphism Lecture, conversation,

exemplification

2h

10. Multiple Inheritance and Interfaces Lecture, conversation,

exemplification

2h

11. Templates and Generic Programming Lecture, conversation,

exemplification

2h

12. Exception Handling in C++ Lecture, conversation,

exemplification

2h

13. Standard Template Library (STL) Overview Lecture, conversation,

exemplification

2h

14. Memory Management and Smart Pointers Lecture, conversation,

exemplification

2h

Seminars-laboratories Teaching methods

1. Introduction to Object-Oriented

Programming (OOP)

Project-work, computer-based

activities, laboratory activities

3h

2. Basics of C++ and Syntax Overview laboratory activities 3h

3. Classes and Objects laboratory activities 3h

4. Constructors and Destructors in Depth laboratory activities 3h

5. Encapsulation and Data Hiding laboratory activities 3h

6. Operator Overloading laboratory activities 3h

7. Inheritance laboratory activities 3h

8. Polymorphism: Function Overloading and

Overriding

laboratory activities 3h

9. Virtual Functions and Runtime

Polymorphism

laboratory activities 3h

10. Multiple Inheritance and Interfaces laboratory activities 3h

11. Templates and Generic Programming laboratory activities 3h

12. Exception Handling in C++ laboratory activities 3h

13. Standard Template Library (STL)

Overview

laboratory activities 3h

14. Memory Management and Smart Pointers laboratory activities 3h

References
1. Bruce Eckel, Thinking in C++, free online.

2. Bjarne Stroustrup, The C++ Programming Language, Addison Wesley, 1997.

3. H. Schildt: C++ manual complet, e-book.

4. Peter Muller: Introduction to Object-Oriented Programming Using C++ , e-book.

5. Rotar C., Object oriented Programming - Lecture notes

http://www.gnacademy.org/uu-gna/text/cc/material.html

9. Corroboration of course contents with the expectations of the epistemic community’s significant

representatives, professional associations and employers in the field of the academic programme

Not applicable

10. Assessment

Activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final

grade

10.4 Course Final evaluation Written paper 60%

- - -

10.5 Seminar/laboratory Continuous assessment Laboratory activities /

portfolio

40%

- -

10.6 Minimum performance standard:

Implementation and documentation of the software units in an object oriented programming language and

efficiently using the related concepts.

Submission date Course leader signature Seminar tutor signature

______________ ______________________ _________________________

Date of approval by Department members Department director signature

________________________ ______________________

