SYLLABUS

Multimedia Techniques and Technologies

1. Information on academic programme

1.1. University	"1 Decembrie 1918" of Alba Iulia	
1.2. Faculty	Faculty Of Informatics And Engineering	
1.3. Department	Exact Science and Engineering Department	
1.4. Area	Computer Science	
1.5. Level	Undergraduate	
1.6. Specialization	Computer Science, 2511/ Systems Analyst, 2512/ Software	
	developers	
	Analyst 251201	
	Computer System Programmer 251204	
	Computer System Engineer 251203	

2. Information of Course Matter

2. Information of Course Matter								
2.1. Course	•	Multimedia Te	Techniques and 2		2.2. Cod	le	CSE 30)7
		Technologies	Technologies					
2.3. Course Leader	r	Kadar Manuella						
2.4. Seminar Tuto	r		Kadar Manuella					
2.5. Academic	III	2.6. Semester	Ι	2.7. Type of	C	J 1		Op
Year							Op – optional,	
				CE - colloquy examinat	tion /			
				CA -continuous assessm	nent)		ŀ	

3. Course Structure (Weekly number of hours)

3.1. Weekly number of	6	3.2. course	2	3.3. seminar, laboratory	4
hours					
3.4. Total number of hours in the curriculum	84	3.5. course	28	3.6. seminar, laboratory	56
Allocation of time:					
Individual study of readers					28
Documentation (library)					20
Home assignments, Essays, Portfolios					10
Tutorials					-
Assessment (examinations)					8
Other activities					-

3.7 Total number of hours for individual study	66
3.8 Total number of hours in the curriculum	84
3.9 Total number of hours per semester	150
3.10 Number of ECTS	6

4. Prerequisites (where applicable)

4.1. curriculum-based	
4.2. competence-based	C3.3. The use of computer and mathematical models and tools to solve specific problems in the application field.
	C3.4. Data and model analysis.
	C3.5. The development of software components of interdisciplinary projects.

5. Requisites (*where applicable*)

5.1. course-related	Room equipped with video projector / boar
5.2. seminar/laboratory-based	Laboratory – computers, Software: MATLAB 7.12, Internet access.

6. Specific competences to be aquired (chosen by the course leader from the programme general competences grid)

competences grad)	
Professional competences	C2. Development and maintenance of computer applications
	C2.4. The use of appropriate criteria and methods for the evaluation of computer
	applications.
	C2.5. The development of dedicated computer projects.
	C3. The use of computer tools in an interdisciplinary context
	<i>C3.1.</i> The description of concepts, theories and models used in the application field.
	C3.2 The identification and explanation of base computer models that are suitable for the
	application domain.
	C3.3. The use of computer and mathematical models and tools to solve specific problems
	in the application field.
	C3.4. Data and model analysis.
	C3.5. The development of software components of interdisciplinary projects.
Transversal competences	CT3 The use of efficient methods and techniques for learning, scientific inquiry and
_	development of the capacities of using knowledge, of adapting to a dynamic society and of
	communication in English.

7. Course objectives (as per the programme specific competences grid)

7.1 General objectives of the	The Multimedia Techniques and Technologies course presents scientific and technical				
course	principles of media capture and computer representation. It is focused on methods of				
	operation and application of computer software and systems that enable delivery of				
	multimedia productions and also contains descriptions and examples of methods used for				
	compression of symbolic data, as well as audio, image and video data.				
	Data compression is discussed taking into consideration novel ways of data				
	representation in order to take very little storage, with the possibility of reconstruction of				
	the original data from the compressed version. The course offers many examples and				
	applications such as: examples in Matlab, Adobe Flash, Adobe PhotoShop to be solved				
	within the labs.				
7.2 Specific objectives of the	By taking this course the students will be able to:				
course	 understand various concepts associated with multimedia technology and 				
	computing				
	understand the components of multimedia systems				
	explain some desirable features for multimedia systems				
	explain the basic concepts of multimedia elements' representation				
	implement and discuss various compression techniques				
	explain how a compression system works				
	 analyse the advantages and disadvantages of data compression. 				

8. Course contents

8.1 Course (learning units)	Teaching methods	Remarks
1. Introduction to multimedia technology	Lecture, conversation, exemplification	2h
2. Color model and human vision. Color spaces	Lecture, conversation, exemplification	2h
3. Data compression. Compression techniques and algorithms	Lecture, conversation, exemplification	4h
4. Multimedia data compression standards	Lecture, conversation, exemplification	2h
5. Image and sound	Lecture, conversation, exemplification	4h
6. Video frames. Video frames digitization and compression	Lecture, conversation, exemplification	4h
7. Audio data representation and processing. Audio compression	Lecture, conversation, exemplification	4h
8. Semantic annotation of images	Lecture, conversation, exemplification	2h
9. Video segmentation	Lecture, conversation, exemplification	2h
10. Multimedia society - where are we going?	Lecture, conversation, exemplification	2h

References

- 1. VAUGHAN, Tay, Multimedia: making it work, 7th ed., New York, San Francisco, Chicago: McGraw-Hill: McGraw-McGraw-Hill: McGraw-Hill: McGraw-Hill: McGraw-Hill: McGraw-Hill: McGraw-Hill: McGraw-McGraw-
- 2. WEIXEL, Suzanne, FULTON, Jennifer, BARKSDALE, Karl, MORSE, Cheryl, MORSE, Bryan, Multimedia basics, Boston, Mass.: Course Technology, 2004, ISBN 0-619-05533-2, 978-0-619-05533-2
- 3. STEINMETZ, Ralf, Multimedia applications, Berlin, Heidelberg: Springer: Springer, 2004, ISBN 3-540-40849-5, 978-3-540-40849-9.
- 4. CHOU, Philip A, SCHAAR, Mihaela van der, Multimedia over IP and wireless networks: compression, networking, and systems, Burlington, MA: Academic Press, 2007, ISBN 0-12-088480-1, 979-0-12-088480-3.
- 5. OHM, Jens-Raine, Multimedia communication technology: representation, transmission and identification of multimedia signals, Berlin, Heidelberg: Springer: Springer, 2004, ISBN 3-540-01249-4, 978-3-540-01249-8.
- 6. GARRAND, Timothy, Writing for multimedia and the Web: a practical guide to content development for interactive media, 3rd ed., Burlington, MA: Focal Press, 2006, ISBN 0-240-80822-3, 978-0-240-80822-2.
- 7. WEINSTEIN, Stephen, The multimedia Internet, New York: Springer Science + Business Media, 2005, ISBN 0-387-23681-3, 978-0-387-23681-0.
- 8. STAMOU, Giorgos, KOLLIAS, Stefanos, Chichester, England: John Wiley and Sons, 2005, ISBN 0-470-85753-6, 978-0-470-85753-3.
- 9. HALSALL, Fred, Multimedia communications: applications, networks, protocols and standards, New YorkLondonHarlow, England: Pearson Education: Pearson Education: Pearson Education, 2001, ISBN 0-201-39818-4.

Seminars-laboratories	Teaching methods	
1. Introduction to MATLAB programming environment	Project-work, computer-based	4
	activities, laboratory activities	
2. MATLAB functions	Project-work, computer-based	4
	activities, laboratory activities	
3. MATLAB arrays	Project-work, computer-based	4
	activities, laboratory activities	

4. MATLAB graphics	Project-work, computer-based	4
	activities, laboratory activities	
5. Image processing using MATLAB	Project-work, computer-based	8
	activities, laboratory activities	
6. Image compression using MATLAB	Project-work, computer-based	4
	activities, laboratory activities	
7. The design and implementation of image compression	Project-work, computer-based	4
techniques using MATLAB	activities, laboratory activities	
8. The design and implementation of audio compression	Project-work, computer-based	4
techniques using MATLAB	activities, laboratory activities	
9. The design and implementation of video compression	Project-work, computer-based	8
techniques using MATLAB	activities, laboratory activities	
10. Project presentation and evaluation.	Project-work, computer-based	12
	activities, laboratory activities	

References

- 1. GONZALEZ, Rafael C., WOODS, Richard E., EDDINS, Steven L., Digital image processing using MATLAB, Upper Saddle River, New Jersey: Pearson Education, 2004, ISBN 0-13-008519-7, 978-0-13-008519-1.
- 2. GOPI, E.S., Algorithm collections for digital signal processing applications using Matlab, Dordrecht: Springer, 2007, ISBN 978-1-4020-6409-8.
- 3. MILIC, Ljiljana, Multirate filtering for digital signal processing: MATLAB applications, Hershey, PA: Information Science Reference, 2009, ISBN 978-1-60566-178-0.
- 4. VAUGHAN, Tay, Multimedia: making it work, 7th ed., New YorkSan Francisco, CAChicago: McGraw-Hill: McGraw-H
- 5. WEIXEL, Suzanne, FULTON, Jennifer, BARKSDALE, Karl, MORSE, Cheryl, MORSE, Bryan, Multimedia basics, Boston, Mass.: Course Technology, 2004, ISBN 0-619-05533-2, 978-0-619-05533-2
- 6. STEINMETZ, Ralf, Multimedia applications, Berlin Heidelberg: Springer: Springer, 2004, ISBN 3-540-40849-5, 978-3-540-40849-9.
- 7. CHOU, Philip A, SCHAAR, Mihaela van der, Multimedia over IP and wireless networks: compression, networking, and systems, Burlington, MA: Academic Press, 2007, ISBN 0-12-088480-1, 979-0-12-088480-3.
- 8. OHM, Jens-Raine, Multimedia communication technology: representation, transmission and identification of multimedia signals, Berlin Heidelberg: Springer: Springer, 2004, ISBN 3-540-01249-4, 978-3-540-01249-8.
- 9. GARRAND, Timothy, Writing for multimedia and the Web: a practical guide to content development for interactive media, 3rd ed., Burlington, MA: Focal Press, 2006, ISBN 0-240-80822-3, 978-0-240-80822-2.

9. Corroboration of course contents with the expectations of the epistemic community's significant representatives, professional associations and employers in the field of the academic programme

The knowledge Multimedia Technologies and Techniques is increasingly valued in the media, medicine, Web services, presentation of companies and organizations on the Internet. There are plenty of employment opportunities at local, regional and international level.

10. Assessment

TOTTEDSESSITION					
Activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final		
			grade		
10.4 Course	Final evaluation	Written paper	60%		
10.5 Seminar/laboratory	Continuous assessment	Laboratory activities	40%		
portfolio					
10.6 Minimum performance standard:a minimum of grade 5 at each criteria					
Modeling and solving problems of average complexity, using mathematics and computer science.					

Submission date	Course leader signature	Seminar tutor signature
Date of approval by Department members		Department director signature